import numpy as np from scipy.optimize import minimize # Example data np.random.seed(0) X = np.random.normal(0, 1, 100) Y = 3*X + np.random.normal(0, 1, 100) # Moment conditions function def moments(params, X, Y): alpha, beta = params residuals = Y - (alpha + beta * X) moment1 = np.mean(residuals) # E[residual] = 0 moment2 = np.mean(residuals * X) # E[residual * X] = 0 return np.array([moment1, moment2]) # Objective function def objective(params, X, Y): m = moments(params, X, Y) return np.dot(m, m) # Sum of squared moments # Initial parameter guess initial_params = np.array([0.0, 0.0]) # Perform GMM optimization result = minimize(objective, initial_params, args=(X, Y), method='BFGS') # Extract optimized parameters alpha_opt, beta_opt = result.x print("Optimized Parameters:") print("Alpha:", alpha_opt) print("Beta:", beta_opt)
top of page

Contact Us

Let’s Start Planning

what type of video would you like?
what service would you like?
what package would you like?
How did you find us
please select a date and time
Day
Month
Year
Time
HoursMinutes
bottom of page